有效率的检索,比囤积固态知识重要得多。只有死记硬背的旧时代行将被淘汰者,才会以后一种形态做人。
想明白了这一切,加上自己本身重生时带来的那强烈的核心价值观,顾莫杰感觉到一阵兽血。
可汗这个项目,赞助得值。
顾莫杰目光何等敏锐,欣喜之余,直切时弊地追问:“可是,你说的这些,靠目前视频网站的技术应该还没法完美实现吧,很多设置都需要手动完成。很多推送之间的内部逻辑关系,都是人工设定的,并不是基于深度算法和大数据自动统计、自动归纳的。”
可汗微微有些不好意思:“这当然还是有问题的,目前每个教学视频最后留的习题,如果被学生做错了。具体跳转到哪一段后续解说视频,是我手动设置的关联。一方面,我对深度算法肯定不够了解,没法基于这个应用调整出一套行之有效的算法。
另一方面。毕竟目前为止看我的视频上课的学生最多也就十万人级别,这个样本容量还不够大,真上了基于深度算法的架构,或许也会因为‘可供深度学习的素材不够多’,而导致其推送效果不如目前的人工设置关联。”
对于这个说法。顾莫杰也深以为然。
鉴别一个基于云端网络的人工智能是否强大,算法固然很重要,但是最重要的还是用户量和用户使用频次。
这也是为什么后世谷歌成长为庞然巨头之后,世上再也没有哪家公司能在人工智能的野蛮生长上比过谷歌了——就算你投入钱再多,科研上再不择手段,充其量给你弄出一个数据修正效率比谷歌算法强两三倍的算法。
那又如何?谷歌的用户人数和频次乘积是你的五倍十倍,你空有三倍效率的算法,照样被越甩越远。何况在没有代差技术的情况下,也不可能有三倍效率的算法。
顾莫杰想了想,问了可汗一个周边的问题:“你原来做视频公开课。有接受过别的慈善捐资过么?”
可汗想了想说:“有,原来我也做了一年半多,去年拿到的捐资是2o多万美元,我主要花在了程序方面,因为我一个人搞不定视频的全部推送架构。”
顾莫杰心里有底了。
“那还怕什么,你只靠二十几万美元一年的投入,加上你个人的无偿劳动,就做出了现有的底子。今年开始你可以得到五百万美元一年,什么事儿办不成。
算法工程师不够的,我从初音集团给你调就是了。严磊博士你认识吧?那是当初跟着杰夫辛顿教授带出来的第一批深度学习算法博士。此前地球上都没这个专业呢。他就是一直跟着我在初音干,眼下还有十几个杰夫辛顿和班吉尔教授的弟子,在我那里,都做得很好。
用户样本数据不够的。可以投钱打公益广告推广,让这些课程得到更多的引流渠道入口,一年上百万美元的广告费下去,我估计把这个业务的用户规模扩大几十倍都很轻松。
而且我估计这些事情都做完的话,也就花掉三百来万美元一年的经费。剩下将近两百万,我还指望你做更多的事情——花在课程翻译和海外推广方面。我希望看到可汗学院的课程不只有英语版的,还要有中法德俄日意西葡诸国语言版本。这个不急,可以每年增加三五种语言翻译,花上几年时间彻底弄扎实。跑得太快的话,估计那些用西班牙语、葡萄牙语和汉语的落后地区,宽带网络都还没普及呢。”
可汗听了倍受鼓舞,但是依然有一丝疑虑,不吐不快地说了出来:
“顾先生,非常感谢您的慷慨。可是,我不得不提醒您一个问题——把课程翻译成多国语言的话,这个资金不知道还能不能走联邦政府许可的公益性事业慈善经费呢?联邦法律可是规定了,凡是享受减免抵税的慈善捐资,不仅要将机构设置在美国境内、全部雇佣美籍公民、还得确保‘所有用户都是用在美国境内’的。
如果是对海外受益的项目,就不能享受这部分经费的抵税优惠了。我不是学法律的,这些事儿本来不懂,但是去年我就想过翻译课程的问题,但是碰到了这个钉子,所以印象特别深刻。”
顾莫杰思忖着说:“还有这事儿?法律的事情你不用管,到时候我找别人咨询一下,想办法搞定。翻译的事情你该做就去做,我说不定也会给你一些降低成本的办法,实在钱不够的,我从公司里直接拿钱给你,也不图抵税了。”
ps.追更的童鞋们,免费的赞赏票和币还有没有啊~515红包榜倒计时了,我来拉个票,求加码和赞赏票,最后冲一把!(~~)